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PREFACE

The work described in this report was authorized under Project MNo.
1L161102A71A, Research in Chemical & Biological Defense, Biotechnology. This
work was started and completed in May 1984, The experimental data are re-
corded in Laboratory Notebook 830080.

The use of trade names or manufacturers' names in this report does
not constitute an official endorsement of any commercial products. This
report may not be cited for purposes of advertisement.

Reproduction of this document in whole or in part is prohibited
except with permission of the Commander, U.S. Army Chemical Research,
Development and Engineering Center, ATTN: SMCCR-SPS-T, Aberdeen Proving
Ground, Maryland 21010-5423, However, the Defense Technical Information
Center and the National Technical Information Service are authorized to
reproduce the document for y.S. Government purposes.

The report has been approved for release to the public.
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STIMULATION OF ALCOHOL DEHYDROGENASE BY DIMETHYLDITHIOCARBAMATE

1. N INTRODUCTION

\\5¥bn an investigation of the mechanism of epoxytrichothecene inhi-
bition of yeast alcohol dehydrogenase (YADH) reaction, we have accidentaliy
found that dimethyldithiocarbamate (DMDTC) was an effective activator of
the enzyme. DMDTC is a vulcanizing accelerator used extensively in manu-
facturing of rubber products such as stoppers. The compound is an analog
of diethyldithiocarbamate (DEQTC), a metabolite of disulfiram (tetraethyl-
thiuram disulfide, antabuse).X Disulfiram is a well known drug for treating
alcoholism because of its inhibitory effect on aldehyde dehydrogenases?ZQ\
In vivo, DEDTC is as effective an inhibitor of aldehyde dehydrogenase as ™.
disulfiram, but has little effect on the enzyme activity in vitro. Simi-
larly, we can not demonstrate any significant effect of DMDTT on aldehyde
dehydrogenase activity in vitro. However, as a result of our recent in-house
efforts, we have positively demonstrated the stimulation of the yeast alcohol
dehydrogenase by this compound. The kinetic data obtained from our present
investigation indicated that the DMDTC stimulation reaction followed an
ordered bireactant mechanism in which DMDTC and NAD binding to the enzyme
molecules is in an obligate order, i.e., DMDTC binding followed by NAD
binding., On the other hand, evidence of formation of a substrate-YADH-DMDTC
transitory complex with enhanced enzyme activity can also be shown from the
kinetic data that we obtained. The results of our present investigation on
the kinetics of the DMDTC stimulacion of the YADH reaction will be presented

in this paper;ki
2. MATERIALS AND METHODS
2.1 Chemicals.

DMDTC sodium salt was obtained from Aldrich Chemical Co., Inc.,
Milwaukee, WI., The oxidized form of nicontinamide adenine dinucleotide (NAD)
and YEDH were obtained from Sigma Chemical Co., St. Louis, MO. All other
chemicals and reagents were reagent grade or the highest purity and were used
without further purification.

2.2 Kinetics of YADH Reaction.

The initial rate of the YADH reaction was measured in a Varian
spectrophotometer by determination of NADH formation at 340 nm and assuming
an absorption coefficient of 6.22 mM-1 cm-1 for NADH.S A1l kinetic studies
were carried out with a 0.1 M sodium phosphate buffer, at pH 7.4, with the
temperature of the reaction mixtures maintained at 25 °C. Reaction was
initiated by addition of 2 ug of the enzyme in 20 ul of the buffer per cu-
vette of total volume of 2.0 ml. All kinetic data were obtained in dupli-
cate and the kinetic parameters calculated by the least square method.
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3. RESULTS

3.1 Effect of DMDTC Concentrations on the Initial Rate of the YADH
Reaction,

The effect of DMDTC concentrations on the initial rate of YADH
reaction is shown in Figures 1 and 2, The velocity curves of Figure 1 were
obtained by varying DMDTC concentrations from 0.5 x 10-6 to 2.5 X 10-6
with initial substrate and NAD concentrations fixed at §.5 x 10-2 ana 37 8 X
10-4 M, respectively. As may be seen, the initial rate of the YADH-catalyzed
formation of NADH increased with increasing concentrations of DMDTC. Even
beyond the initial linear rate, the presence of DMDTC at different concen-
trations continued to increase the enzyme reaction profoundly, but in its
absence the reaction leveled off rapidly in about 10 minutes. These results
clearly indicate the profound stimulatory effect of DMDTC on the YADH
reaction.

Figure 2A shows the velocity versus DMDTC concentration plot, and
the corresponding Lineweaver-Burk plot® is shown in Figure 2B. Under the
reaction sond1tions employed, the apparent value of Kp pmprc was found to be
8.7 x 10~/ M. The corresponding V value of the reaction system was 10

umoles/min of NADH formed. max

3.2 Effect of DMDTC on Kinetic Parameters as NAD Concentration Varied.

Figure 3A shows the effect of DMDTC concentrations on the apparent
Km,NAD and the corresponding Vpax values of the YADH reaction as NAD con-
centrations varied. As a result, a family of linear Lineweaver-Burk plots
was obtained. The corresponding kinetic constants as calculated from these
reciprocal plots are listed in Table 1. As can be seen, when the sustrate
concentration was kept constant at 8.4 x 10-2 M, the change of the fixed
levels of DMDTC from 0.75 x 10-6 to 2.5 x 10- G_M resu. ted 12 the decreasing
of the apparent K, values from 5.0 x 10~ -4 to 1.46 x 10”7 M. The recip-
rocal plots 1nterséc€ at a common point on 1l/v-axis, indicating that the
apparent Vypax values of the YADH reaction were independent of DMDTC concen-
trations present. The Vpax value of the reaction system was thus obtained
by averaging the apparent Vp,, values shown in Table 1 and found to be about
equal to 15.5 umoles of NADH/min,

Figures 3B and C show the replot of the apparent Kn,NAD versus
1/0OMDTC and that of slope versus 1/[DMDTC], respectively. Thé Ka,oMpTC and
Kn NAD vValues of the reaction system were then ca]culated to be in tRe range

£'2.6 x 10-6 Mand 1 2 x 10-4 M M, respectively, value, calculated from
the intercept on the slope-axis of Figure 3B, was ?ound to be 15.9 umoles of
NADH/min, which agrees well with the value calculated directly from Table 1.

3.3 Effect of NAD Concentrations on Kinetic Parameters as DMDTC
Concentration Varied.

The kinetic data shown in Figure 3 can also be expressed using
DMDTC as the varied ligand, and a series of 1/v versus 1/DMDTC plots is
shown in Figure 4A. It can be seen that as NAD concentration increased,
the reciprocal plots intersect at a common point, where 1/[DMDTC] = -1/Kp

8
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25X 10-6M
0.6
20X 10-6M
0.5}
1.5X10~5M
w 0.4
S
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e 0.3}
2
2 0.75X10-6M
0.2}
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0.1}
i 1 1 j
0 5 10 15 20

TIME (MINUTES)

Figure 1. Effect of DMDTC Concentrations on the Initial Velocity of YADH
Reaction

Reaction was carried out in 0.1 M sodium phosphate buffer, pH 7.4, with

DMDTC concentrations varied from 0 to 2.5 x 10--6 M and the initia' substrate
and NAD concentrations fixed at 8.5 x 10-2 M and 3.8 x 10-4 M, respectively.

Curves 0, 1, 2, 3, 4, and 5 were obtained in the presence of 0, 0.75 x 10-6,

1.0 x 10-6, 1.5 x 10-6, 2.0 x 10-6, and 2.5 x 10-g M of DMDTC, respectively.
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Figure 2A. The Velocity Versus DMDTC Concentration Plot
A is the velocity versus DMDTC concentration plot and B is

the corresponding double reciprocal plot of the kinetic data
shown in A. Data were taken from Figure 1,
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Figure 24, Effect of DMDTC Concentrations on the Apparent &n,NAD
and Vmax Values

A, reciprocal plot of 1/v versus 1/NAD; B, replot of KNAD app versus
1/DMDTC; and C, replot of slope versus 1/DMDTC. NAD concengratlons
varied from 1.13 x 10-4 M to 3.77 x 10-% M, as substrate concentra-
tions were kept constant at 8.4 x 10-2 M,” DMDTC concentrations were
fixed at levels shown in Figure 3A. -
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Table 1. Effect of DMDTC Concentrations on the Apparent
Values of Ky NAD and Vmax
DMDTC AD Vmax
(x10-6 M) KTRS’ (A/min)  HADH (ymoles/min)
0.5 5.0 x 10-4 0.11 17.7
0.75 2.9 x 10-4 0.09 14.15
1.0 2.4 x 10-4 0.091 14.63
1.5 1.91 x 10-4 0.094 15.11
2.0 1.64 x 10-4 0.097 15.59
2.5 1.46 x 10-4 0.098 15.76
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Figure 4A. Effect of NAD Concentrations on Kinetic Parameters as DMDTC
Concentration Varied

Kinetic data shown in Figure 3 are expressed using DMDTC as the varied
ligand. A, 1/v versus l1/DMDTC plots. 8, replot of 1/Vpax app versus
1/NAD. C, replot of 1/Kp pmpTc versus NAD concentrations. B, replot
of slope versus 1/NAD. ~
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and 1/v = 1/Yqax. The kinetic parameters may be calculated directly from
this interceont point, but it is preferred to determine these values from the
replots. Figures 4B, C, and D were obtained by replots of 1/Vpay app versus
1/[NAD], 1/Kp,app versus [NAD], and slope versus 1/[NAD], respectively. The
stimulatory consgant (Ka) of DMDTC determined from these plots and replots
was found to be in the range of 2.5 «x 10-6 M, and the corresponding V,

value was about 15.8 wmoles/min of NADH formed These values agreed we?f
with those obtained from Figure 3. Table 2 lists the apparent values of

Vmax and Kp, as determined from these plots. The results indicated that

both the apparent Vpax and Kp values varied with NAD concentrations, but in
opposite directions. As NAD concentrations increased, the apparent values of
Vmax increased and approached Vpax of the enzymatic reaction (also see Figure
48). As the [NAD] increased the Kp app decreased and approached Kp as a
1imit (Figure 4C). The results shown 1in Figure 4D indicated that the slope
of the family of reciprocal plots decreased as NAD concentraticns increased
and approached the limit of zcro. Again, it may be seen from Figure 4D

that as [NAD] became very large, the velocity of the reaction became indepen-
dent of DMDTC concentrations. In addition, the family of reciprocal plots
shown in Figure 4A bears no symmetry to that of Figure 3A. These results

may indicate that the stimulatory effect of OMDTC on the YADH reaction fol-
lowed an ordered bireactant mechanism under the reaction conditions employed.

3.4 Effect of DMDTC on the Kinetic Parameters as Substrate
Concentrations VYaried,

The reciprocal plots of 1/v versus 1/EtOH is shown in Figure 5.
The reactions were carried out with substrate concentrations varied from
1.7 x 102 to 1.7 x 10-1 M in the presence or absence of 2.5 x 10-4 M of
DMDTC. NAD concentrations were fixed at 3.8 x 10-4 M. The reciprocal plts
of both control and plus activator experiments yielded biphasic curves,
which were concave downward. These results may indicate the presence of
substrate activation reaction., The data shown here indicated significant
effect of DMDTC on both the apparent values of Ky gtoH and Vpax of the reac-
tion., The presence of 2.5 x 10-4 M of DMDTC reduled Et0 values from
4.7 x 1072 to 3.0 x 10~ M and increased the corresponding V values from
57.9 to 64.3 "moles/min of NADH formed for the control and pTus activator
experiments, respectively. The DMDTC-stimulatory effect depended on the
substrate concentrations present. At lower substrate concentrations, the
t9 values were estimated to be in the range of 2.2 x 102 M and 2.4
5 M and the corresponding V values were 27.3 and 38.6 umoles/min
obtained in the absence and presence of DMDTC, respectively. The kinetics
cf the stimulatory reaction resembled che mixed-type nonessential activation
mechanism. Accordingly, the Kp values of DMDTC w1th respect to EtOH were
estimated to vary from 2.1 x 10-5 M to 1.3 x 10-4 M, calculated from the low
and high (S) parts of the biphasic curves.

4. DISCUSSION

For a rapid equilibrium ordered bireactant systems, the reaction
may be described in the following equilibria.

17
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Table 2, Effect of NAD Concentrations on the Apparent Values
of KA,pMDTC and the Correspounding Vmax

NAD KA

DMDTC Vmax

(x 10-4 M) _ €)) (A/min) N%DH ( moles/min)
1.13 0.99 x 10-6 0.061 9.3
1.89 0.68 x 10-6 0.073 11.7
2.64 0.54 x 10-6 0.078 12.5
3.77 0.37 x 10-b 0.084 13.5
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CURVE 1@

A CURVE 2

min/umoles of NADH

! ! 1 I J
-4 -2 0 2 4 6 8 10
1/EtOH (X 5.9 M—1)

Figure 5. Effect of DMDTC Concentrations on Kinetic Parameters as Ethanol
Concentration Varied

The reaction was carried out with ethanol concentrations varied from 1.7 x

10-2 to 1.7 x 10-2 M in the presence (Curve 2) and absence (Curve 1) of 2.5 x
10-4 M of DMDTC. NAD concentrations were kept constant at 3.8 x 10-4 M.
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KA
YADH + DMDTC =——— YADH-DMDTC

+
NAD
11 Kg  EtOH

! P
YADH-DMDTC-NAD =—= YADH-DMDTC + NADH + H*

The reaction scheme indicates that the addition of DMDTC to YADH before NAD
binding is essential for the stimulatory reaction. The experimental data

that support the ordered bireactant mechanism may be summarized as follows.
(1) The family of reciprocal plots of v versus [NAD](Figure 3A) bears no
symmetry with that of v versus [DMDTC] plots (Figure 4A). If the reaction
follows the random ordered bireactant reaction mechanism, Figure 3A will have
a common intersecting point above 1/[NAD]-axis at -1/Kyap. This was found

not to be the case. (2) The results shown in Figure 3A and Table 1 indicate
that, as [NAD] varied, the VMAXx values of the reaction system were indepen-
dent of DMDTC concentrations, These data are inconsistent with the random
ordered reaction mechanism. (3) The linear replot of slope versus 1/[NAD]

of the experimental data shown in Figure 4A had intercept at the origin, which
substantiates the independence of the reaction velocity on [DMDTC] as [NAD]
became infinitely high., The competitive activation of NAD reduction by DMDTC
is one of the major criteria to distinguish the ordered reaction mechanism
from the random ordered rapid equilibrium mechanism. (4) The stimulation
reaction was a result of increasing YADH affinity for NAD by DMDTC binding

as seen by the reduction of K, NAp in the presence of different fixed levels
of DMDTC.  (5) The magnitude of the kinegic constants iy in the order gf
KA,DMDTC < ‘“,NAD < kﬂ\,EtOH = 2.5 x 10~ ﬂ < 1.2 x 10~ H < 3.0 x 10- ﬂ.

If the assumption that DMDTC stimulation reaction follows the
ordered bireactant mechanism with respect to NAD is correct, the rate equa-
tion may be expressed in the following form.

v _ [DMDTC] [NAD) ]
Vmax KA KNAD + KnaD [DMDTC] + [DMDTC] (NAD] )

When DMDTC is the varied ligand, the equation may be expressed:
v oo [DMDTC]

= (2)
Vmax g, ( TaD) + moTC) (1 ¥ —-—m“n';)
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When NAD varied, the equation was expressed as:

v [NAD] a)

v
" Knap (1 * [DMDATC]) + [NAD]

Equation 3 indicates clearly the competitive activation of NAD by
DMDTC. Equation 2 indicates that at different fixed levels of DMDTC, the
apparent values of Vhax increase and those of Kg pMpTC decrease as NAD con-
centration varied. The experimental data obtained are consistent with the
rate equations derived, based on the assumption t.at the stimulatory reaction
follows the ordered bireactant mechanism, Since DMDTC is a mild chelating
agent, binding of the activator with the zinc at the active center of the
enzyme may change the conformation so that the YADH-DMDTC binary complex is
more active than the free enzyme. Based on the initial rate and product in-
hibition studies, Wratten and Cleland’ proposed an ordered mechanism for the
yeast enzyme, However, a partly random mechanism was indicated by isotope
exchange experiments8.9 and steady-state kinetics with various secondary al-
cohols.10,11 The general reaction mechanism may also include the formation
of abortive complexes E-NADH-EtOH and E-EtOH.10,12,13 Recently, the results
obtained from the studiesl4 of the deuterium isotope effect again indicated
that the compulsory ordered mechanism originaily proposed ty Theorell and
Chancel5 is correct. These discrepancies may be due to the ligand-induced
protomer-protomer interactions.l€ The DMDTC-induced subunit interactions
must facilitate either substrate binding or product release or hydride
transfer,

The biphasic reciprocal points shown in Figure 5 indicate devia-
tion from normal Michaelis-Menten behavior, which have been frequently ob-
served in ternary complex systems having more than one reactant. The devia-
tions from normal Michaelis-Menten kinetics with respect to one substrate
are more pronounced at low concentrations of second substrate.l7,18 The
relatively low NAD concentrations (3.8 x 10-4 M) employed for experiments
shown in Figure 5 may have enhanced the randomness of the reaction. The
mixed type activation kinetics with respect to substrate suggest the forma-
tion of YADH-DMDTC-EtOH complex in the reaction scheme shown below. Here
a and g values were found to be 0.66 and 1.1, respectively,

Ks k
YADH + EtOH <—  YADH—EtOH ——=YADH + P
+ +
DMDTC DMDTC
J ks aKs ” aKg Bp
YADH — DMDTC + EtOH " YADH — DMDTC — EtOH ——= YADH — OMDTC + P
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